"The Options for Long Duration Energy Storage"

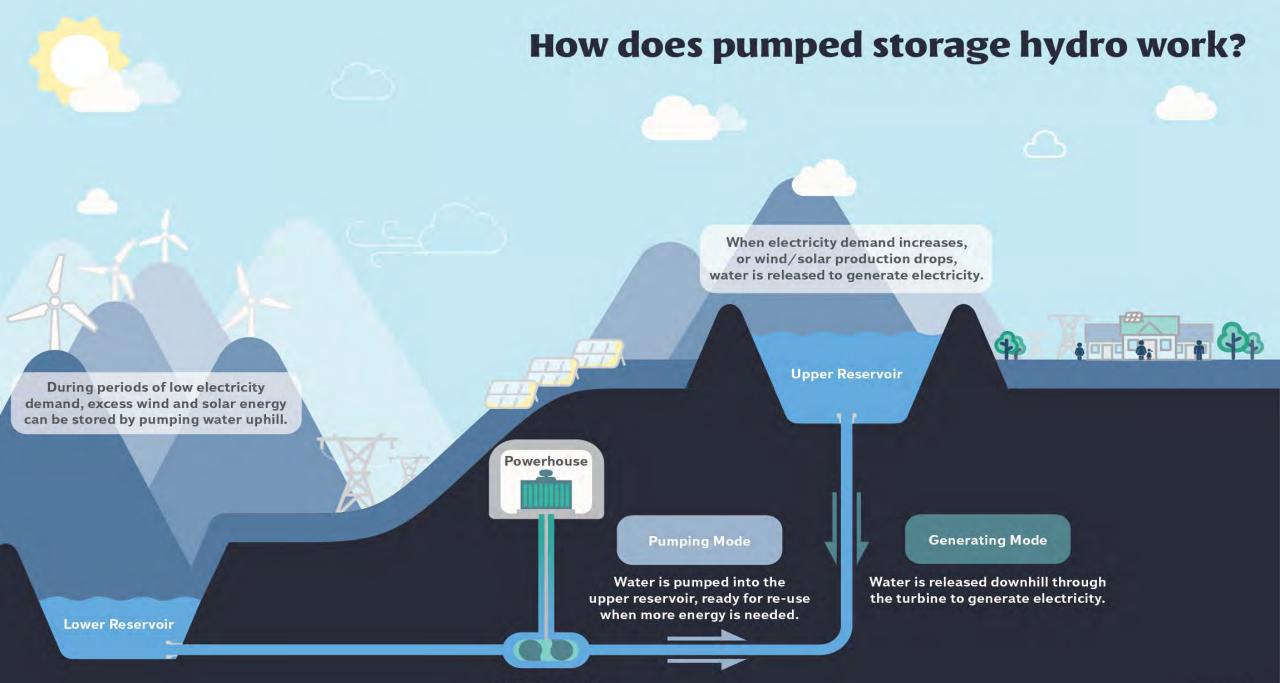
- **Erik Steimle**, Vice President of Project Development, Rye Development
- **Hugh McDermott**, Senior Vice President Sales and Business Development, Energy Storage Systems, Inc.
- **Doug Houseman**, Principal Consultant, 1898 & Co. (Burns & McDonnell)

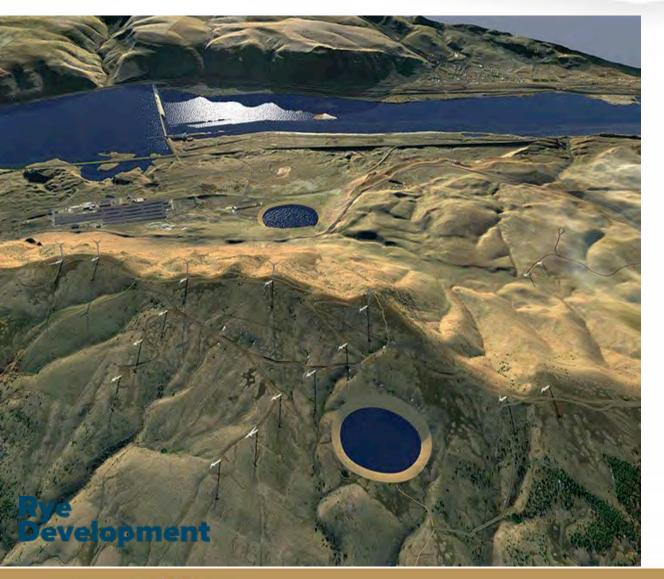
DESTINATION 2050

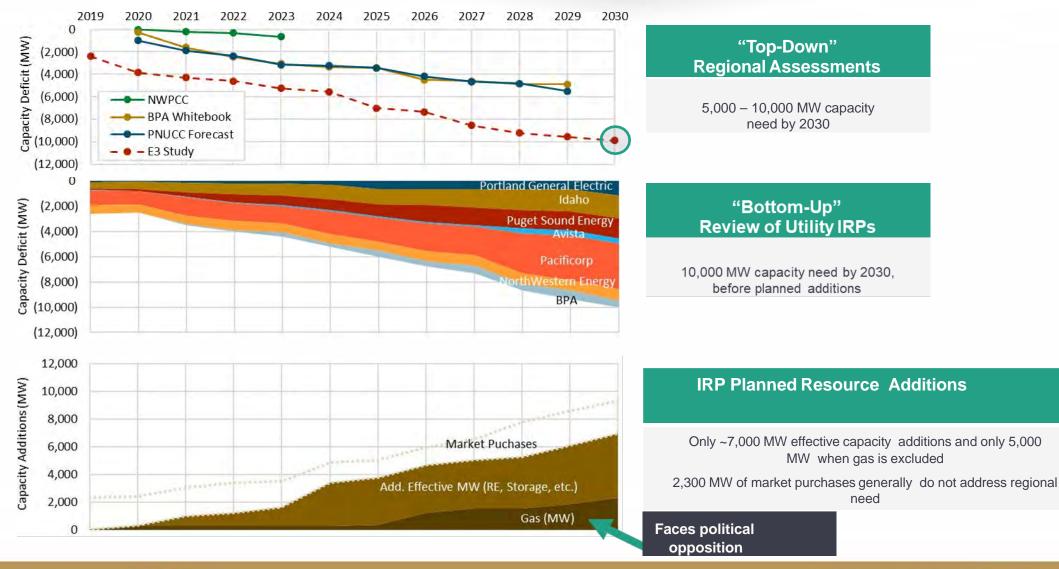
Development

Closed-loop Hydroelectric Pumped Storage

A community-driven approach to a carbon free and equitable power


Building on a legacy of hydropower in the Pacific Northwest to support 100% clean power goals


- Rye Development is the largest developer of new low impact certifiable hydropower in the us
- Focused on 24/7 renewable electricity and carbon free capacity
 - Closed loop pumped storage in the renewable-heavy Pacific Northwest
 - Summer peaking conventional hydro in the southeastern US
 - Baseload new hydropower in the mid-Atlantic
 - 24 fully permitted projects
 - 3.7-billion USD under development


Turbine/Pump

- Supporting regional clean energy and climate goals
- Washington
 - 100% renewable energy by 2050 mandate
- Oregon
 - 100% Renewable energy by 2040 mandate
- California
 - 100% renewable energy by 2040 mandate

The Options for Long Duration Energy Storage

ing S

Hugh McDermott SVP Sales & Business Development

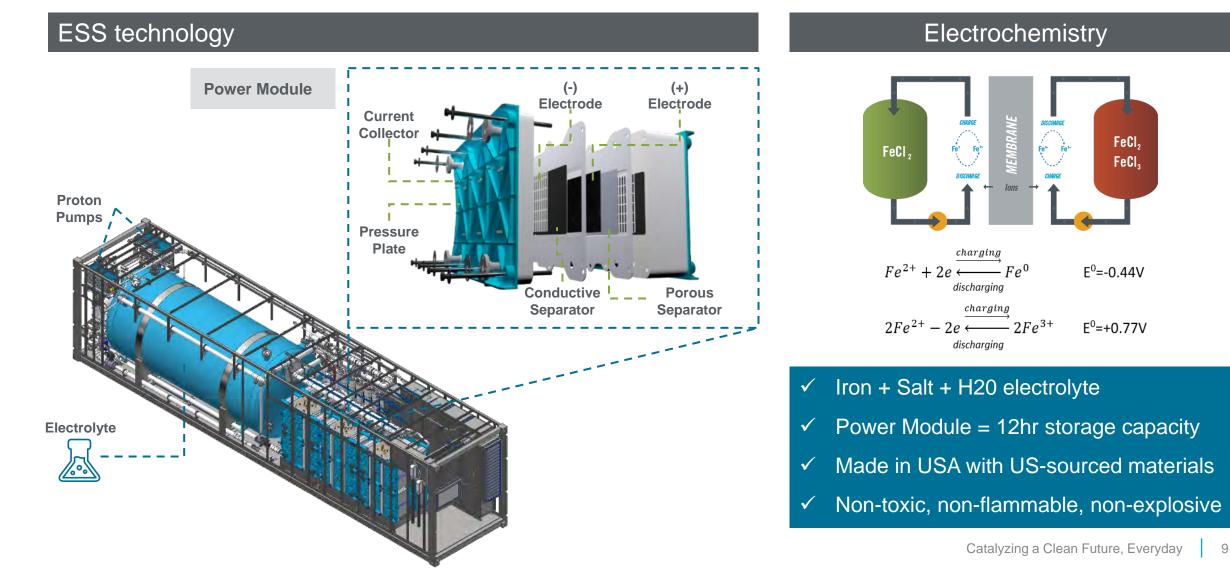
Powergen May 23, 2022

ESS Overview

≈ESS[™]

Company profile

ESS	Founded in 2011 with mission to develop lowest cost long-duration energy storage technology		
Headquarters	Wilsonville, OR		
Facilities	250,000 ft ² manufacturing plant		
	Automated production line currently scaling to 2GWh annual production		
Employees	240+		
Technology	Iron flow battery for utility-scale and commercial applications		
Key investors and partners	Breakthrough Energy VENTURES SB Energy Safibank Group		


NYSE symbol GWH

Manufacturing facilities in Oregon


Iron Flow Battery – Unlimited Cycling

Energy Warehouse[™]

Product Summary

Behind-the-meter solution

Containerized fully-integrated design for turnkey delivery

Easy to permit = Fast to deploy

Re-deployable as needs change

Current Specifications

Configurable Range	50kW – 90kW (peak power)	
Storage Duration	4 – 12 hours	
Usable Energy	400kWh – 600kWh	
Response Time	<1 second	
Module Cycle Life	>20,000 cycles	
Ambient Temperature	-5°C to +50°C (*Additional weatherization option available)	
Design Life	25-year service life	
Warranty	1 year comprehensive, 10-year extended warranty on battery modules and electrolyte management sys	

Energy Center[™]

≈ESS[™]

Product Summary

Front-of-the-meter solution "Battery in a Building" platform Modular design for unlimited scale Power capacities starting at 3MW

Power Train

Quad Pods

Current Specifications

Configurable Range	Customizable up to GW scale
Storage Duration	6 -12 hours
Usable Energy	Configurable - up to GWH scale
Response Time	< 1 second
Module Cycle Life	>20,000 cycles
Ambient Temperature	-5°C to +50°C (*Expandable range)
Design Life	25-year service life
Warranty	1 year comprehensive, 10-year extended warranty on battery modules and electrolyte management sys

ESS Benefits

≈ESS[™]

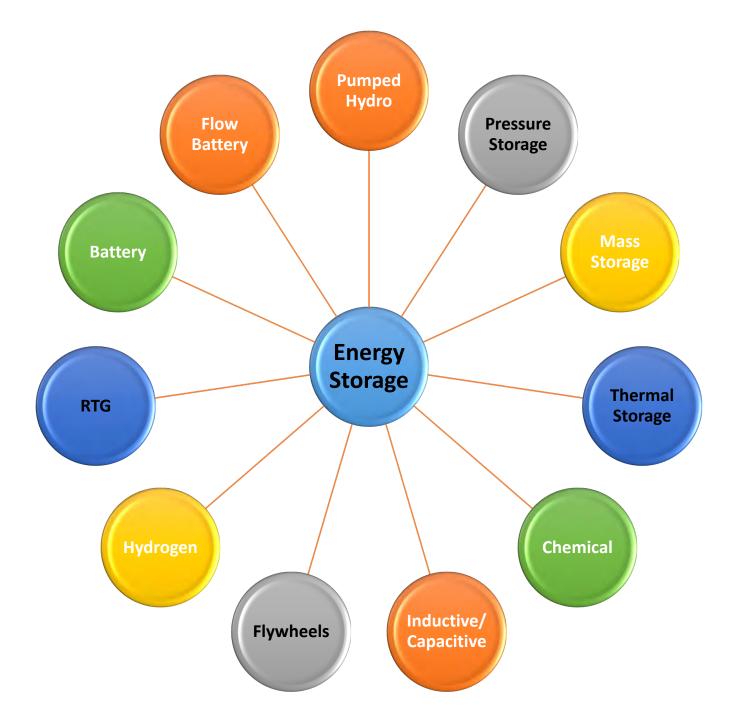
What Customers Demand	≈ ESS [™]	How ESS Transforms the Grid
Longer Duration	Up to 12 hours (current version)No capacity fadeNo power fade	 Can replace coal and gas with solar and wind Designed for utility scale
S Low Cost	 Lower LCOS than other technologies Incremental cost of storage <\$20/kWh 	 The first truly low-cost flow battery In commercial production today
Power On Demand	 <1 second response time >20,000 cycle life – \$0 marginal cost per cycle Flexibility allows multiple revenue streams 	 Improved grid resiliency and flexibility Enables multiple use cases
Safety and Reliability	 Non-flammable, non-toxic, no explosion risk Wide operating temperature range Munich RE insures technology risk 	 Can deploy in a wide range of geographies No HVAC needed – cuts CAPEX and OPEX Customers can be confident in the long-term
Sustainability	 Easily sourced materials; recyclable components "Plug and play" with 25-year operating life 	 Environmentally sustainable Accelerates clean energy transition

Safe, sustainable long duration energy storage technology now and for decades to come

CATALYZING A CLEANER FUTURE. EVERYDAY.

Doug Houseman

- 50 years in the industry
- Work for 130 utilities in 70 countries
- Past chair (finally) of the Emerging Technology committee for IEEE PES
- NIST resiliency fellow
- Chair of IEEE P2030
- Involved in storage related projects since 1984 when seconded to DARPA



Long Duration Storage

• Two key aspects of my definition:

- Can hold a charge for days to months with little self discharge
- Can provide energy for 12 hours or longer without recharging
 - For events like Polar Vortex the need is typically 122 hours

Storage technologies

It is not that they can't, but that the current commercial technologies don't

Key characteristics of storage

- 1. Number of cycles
- 2. Round trip efficiency
- 3. O&M costs
- 4. Initial capital costs
- 5. Ramp rate
- 6. Time to switch from charge to discharge
- 7. Capacity and Energy relationship
- 8. Hazards, mitigation, and insurance
- 9. Topological requirements
- 10. Length of storage
- 11. Self discharge rate
- 12. Lifespan of the facility

energy-cast.com

